Cyclic nucleotide-dependent switching of mammalian axon guidance depends on gradient steepness.
نویسندگان
چکیده
Correct wiring of the nervous system during development requires axons to respond appropriately to gradients of attractive and repulsive guidance cues. However, the steepness and concentration of these gradients vary in vivo, for instance, with distance from the target. Understanding how these changing conditions affect the navigation strategies used by developing axons is important for understanding how they are guided over long distances. Previous work has shown that cyclic nucleotide levels determine whether axons are attracted or repelled by steep gradients of the same guidance cue, but it is unknown whether this is also true for shallow gradients. We therefore investigated the guidance responses of rat superior cervical ganglion (SCG) axons in both steep and shallow gradients of nerve growth factor (NGF). In steep gradients we found that cyclic nucleotide-dependent switching occurred, consistent with previous reports. Surprisingly however, we found that in shallow NGF gradients, cyclic nucleotide-dependent switching did not occur. These results suggest that there may be substantial differences in the way axons respond to gradient-based guidance cues depending on where they are within the gradient.
منابع مشابه
Gradient steepness influences the pathfinding decisions of neuronal growth cones in vivo.
Gradients of chemotropic molecules are generally thought to be fundamental for the guidance of neuronal growth cones in the developing embryo. Here we show that the grasshopper-secreted semaphorin Sema 2a is expressed in a gradient during the period of tibial Ti1 pioneer axon pathfinding into the CNS. At two critical Ti1 growth cone choice points, the Sema 2a gradient differs in steepness, wher...
متن کاملProtein kinase A regulates the sensitivity of spinal commissural axon turning to netrin-1 but does not switch between chemoattraction and chemorepulsion.
Bifunctional axon guidance cues have been grouped into two classes depending on whether changes in intracellular cAMP or cGMP switch the response of the growth cone between attraction and repulsion. According to this model, axons respond to netrin-1, a group I guidance cue, as a chemoattractant when cAMP levels are high in the growth cone but switch and are repelled when the intraneuronal conce...
متن کاملIntegration of Shallow Gradients of Shh and Netrin-1 Guides Commissural Axons
During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide...
متن کاملSemaphorin Signaling Unplugged A Nervy AKAP cAMP(s) Out on Plexin
was that high cyclic nucleotide levels favor attraction, Semaphorins signal through Plexin receptors to mediwhile low levels favor repulsion. Moreover, response ate a range of predominantly repulsive effects on axons conversion for some guidance cues is dependent on in the developing nervous system. Semaphorin-directed cAMP levels and extracellular calcium, while response repulsive turning resp...
متن کاملBayesian model predicts the response of axons to molecular gradients.
Axon guidance by molecular gradients plays a crucial role in wiring up the nervous system. However, the mechanisms axons use to detect gradients are largely unknown. We first develop a Bayesian "ideal observer" analysis of gradient detection by axons, based on the hypothesis that a principal constraint on gradient detection is intrinsic receptor binding noise. Second, from this model, we derive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular neurosciences
دوره 47 1 شماره
صفحات -
تاریخ انتشار 2011